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Abstract. We first extend Hopfield networks to cluster-

ing bipartite graphs (words-to-document association) and

show that the solution is the principal component analy-

sis. We then generalize this via the min-max clustering

principle into a self-aggregation networks which are com-

posed of scaled PCA components via Hebb rule. Cluster-

ing amounts to an updating process where connections

between different clusters are automatically suppressed

while connections within same clusters are enhanced. This

framework combines dimension reduction with clustering

via neural networks and PCA. Self-aggregation networks

can also improve information retrieval performance. Ap-

plications are presented.

1 Introduction

Clustering documents[?] is a challenging problem because

of the very high dimensionality; in vector space model,

the dimensionality is the size of vocabulary. In recent

years, dimension reduction techniques such as principal

component analysis (PCA) (which is also called Latent

semantic indexing (LSI)[?]) are popularly used to project

the documents into the low-dimensional space.

Feedforward networks[?] via backpropagation has been

widely used for classification tasks such as text categoriza-

tion [?]. Although Hopfield associative-memory networks[?]

is not suitable for classification, it has the flexibility to

be adopted for solving combinatorial problems[?] such as

traveling saleman problem, graph partitioning, etc.

In this paper, we explore the relationship between data

clustering and dimension reduction via the neural net-

works connection. We show that using Hopfield networks

to cluster the bipartite graph (word-document association

matrix), PCA is the solution. This provides justification

for clustering using PCA (see §2).

By appropriately modifying the clustering objective

function according to a min-max clustering principle, we

obtain a min-max cut clustering algorithm whose equa-

tions are essentially rescaling of those for PCA (see §3).

Using scaled PCA components we can construct self-

aggregation networks which have the unique property of

cluster self-aggregation: connections between different clus-

ters are automatically suppressed while connections within

same clusters are enhanced. An indepth analysis of self-

aggregation (SA) networks are provided (see §4).

We use SA networks for document retrieval and ob-

tained improved retrieval precision. We also use SA net-

works for clustering documents and words simultaneously,

and obtain substantially better results than the K-means

method (see §5).

2 Hopfield networks for clustering

documents

In the rectangular m × n term-document association ma-

trix B = (bij), each row represents a word and is de-

noted by an r-node in a weighted bipartite graph shown

in Fig.??. Each column represents a document and is de-

noted by a c-node. Element bij in the matrix represents

the counts of co-occurrence of row object ri and column

object cj , and is represented by a weighted edge between

ri and cj.

r1

c5 c6c4c3c2c1

r3r2 r4 r5 r6 r7

R2R1

C1 C2

Figure 1: A bipartite graph with r-nodes and c-nodes. The
dashed line indicates a possible partitioning.

Hopfield networks can be used to partition an stan-

dard undirected graph [?]. In this section, we extend Hop-

field networks for partition bipartite graph, and show that

the relaxed version of the Hopfield networks for bipartite
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graphs is precisely the Latent Semantic Indexing.

We wish to partition the r-type nodes of R into two

parts R1, R2 and simultaneously partition the c-type nodes

of C into two parts C1, C2, based on the clustering prin-

ciple of minimizing between-cluster association and max-

imizing within-cluster association (see Fig.??). We use

indicator vector f to determine how to split R into R1, R2:

f(i) =

{
1 if ri ∈ R1

−1 if ri ∈ R2
(1)

and use g to determine how to split C into C1, C2:

g(i) =

{
1 if ci ∈ C1

−1 if ci ∈ C2
(2)

(For presentation purpose, we index the nodes such that

nodes within same cluster are indexed contiguously. The

clustering algorithms presented are independent to this

assumption. Bold face lower case letters are vectors. Ma-

trices are denoted by upper case letters.) Thus we may

write

f =

(
f (+)

f (−)

)
, g =

(
g(+)

g(−)

)
(3)

With this indexing, the association matrix is

B =

(
BR1 ,C1

BR1 ,C2

BR2 ,C1
BR2 ,C2

)
(4)

It is convenient to convert the bipartite graph into an undi-

rected graph. We follow standard procedure and combine

the two types nodes to one by setting

q =

(
f

g

)
, W =

(
0 B

BT 0

)
, (5)

This induces an undirected graph G, whose adjacency ma-

trix is the symmetric weight matrix W .

Consider the following objective function,

Jcut(C1, C2; R1, R2) =
1

2
qT Wq (6)

= s(BR1 ,C1
) + s(BR2 ,C2

)− s(BR1 ,C2
)− s(BR2 ,C1

)

where

s(BR1 ,C2
) ≡ s(R1, C2) ≡

∑

ri∈R1 ,cj∈C2

bij,

and s(BR2 ,C1
), s(BR1 ,C1

), s(BR2 ,C2
) are similarly defined.

s(BR1 ,C1
) is the association within cluster 1 (see Fig.1),

and we call it the self-association. s(BR2 ,C2
) is the self-

association of cluster 2. s(BR1 ,C2
) and s(BR2 ,C1

) are the

overlaps between different clusters.

We propose a min-max clustering principle: data points

are grouped into clusters such that the overlaps s(BR1 ,C2
),

s(BR2 ,C1
) between different clusters are minimized while

cluster self-similarities (BR1 ,C1
), s(BR2,C2

) are maximized[?].

Maximizing s(BR1 ,C1
)+s(BR2 ,C2

) while minimizing s(BR1 ,C2
)

+s(BR2 ,C1
) is equivalent to maximizing the objective func-

tion Jcut(q).

Using Hopfield network [?, ?], the solution is obtained

by the update rule

q(t+1)(i) = sgn[
∑

j

wijq
(t)(j)].

where q(t) is the value of q at t-th update. This equa-

tion can be written in vector form q(t+1) = sgn[Wq(t)].

One can verify that Jcut(q) monotonically decreases in

this update.

If one relaxes q(i) from discrete indicators to continu-

ous values in (−1, 1), the solution q satisfies

Wq = λq. (7)

Now utilizing the explicit structures of W and q, we have

(
0 B

BT 0

) (
f

g

)
= λ

(
f

g

)
. (8)

which is identical to

Bg = λf , BT f = λg. (9)

The solutions to these two equations are the singular value

decomposition (SVD) of B. To see clearly, upon substitu-

tions, we have

(BBT )f = λ2f , (BT B)g = λ2g. (10)

This verifies that {fi} are left singular vectors and {gi}
are right singular vectors of the SVD of B:

B =

m∑

k=1

fkλkg
T
k = FmΛmGT

m. (11)

We summarize these results in

Theorem 1. Using Hopfield networks to maximize the

objective function Jcut(q) of Eq.(6), the solutions for clus-

tering indicators are given by SVD of B.

Several further results can be obtained. First, note

that SVD of B are precisely the Latent Semantic Indexing

[?]. Thus we conclude that Hopfield networks for cluster-

ing leads to LSI. The partitioning indicator vectors are the

LSI index vectors.

Second, because s(BR1 ,C1
) + s(BR2 ,C2

) + s(BR1 ,C2
) +

s(BR2 ,C1
) =

∑
ij bij ≡ s is a constant for a given associa-

tion matrix B, we have Jcut = s−2[s(BR1 ,C2
)+s(BR2 ,C1

)].

Therefore, maximizing Jcut(q) is equivalent to minimizing
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s(BR1 ,C2
)+s(BR2 ,C1

) alone. In graph theory, s(BR1 ,C2
)+

s(BR2 ,C1
) is the sum of weights on the edges being cut, and

is called cutsize. Therefore, PCA is equivalent to MinCut

in graph theory. It is well known that MinCut often leads

to skewed cuts. This imbalance will be addressed in §3.

Thirdly, all these are connected to K-means clustering.

Consider the K-means squared error objective function,

JKmeans =

K∑

k=1

∑

xi∈ck

||xi − ck||2 =

K∑

k=1

∑

xi,xj∈ck

||xi − xj ||2
nk

(12)

' 1

n̄k

K∑

k=1

∑

xi,xj∈ck

||xi − xj ||2 (13)

=
1

n̄k


∑

ij

||xi − xj ||2 −
∑

p6=q

∑

xi∈cp

∑

xj∈cq

||xi − xj||2



(14)

where xj is the j-th document: B = (x1, · · · ,x2); ck, nk

are the centroid and size of k-th cluster, and n̄k is a

suitable constant represents approximately the number of

points in a cluster on average. In Eq.(14), the first term

is a constant, and the second term is the sum of distances

between documents in different clusters, which is analo-

gous to overlapping association between different clusters,

s(BR1 ,C2
) + s(BR2 ,C1

). Therefore, Hopfield network (and

PCA) has a nice connection to the K-means clustering:

one minimizes the between-cluster associations (similari-

ties) whereas the other maximizes the between-cluster dis-

tances (di-similarities).

All results in this section for bipartite graphs can be

immediately extended to an undirected graph, G(A), with

adjacency matrix A. The clustering objective function

Eq.?? becomes

Jcut(C1, C2) = s(AC1 ,C1
) + s(AC2 ,C2

) − 2s(AC1 ,C2
) (15)

where s(AC1 ,C2
) is defined similar to s(BR1 ,C2

). The clus-

tering indicators g of Eq.?? via the Hopfield network are

given by the eigenvector of Ag = λg.

3 MinMaxCut

Approximately speaking, the above Hopfield network of

maximizing Eq.?? is equivelant to

min
s(BR1 ,C2

) + s(BR2 ,C1
)

s(BR1 ,C1
) + s(BR2 ,C2

)
. (16)

Maximization of s(BR1 ,C1
) + s(BR2 ,C2

) does not guar-

rentee the balance of the two terms; in fact it often hap-

pens that s(BR1 ,C1
) � s(BR2 ,C2

) or s(BR1 ,C1
) � s(BR2 ,C2

).

To prevent this imbalance of cluster self-associations, we

add a cluster balance condition in the min-max clustering

principle that s(BR1 ,C1
), s(BR2 ,C2

) are maximized individ-

ually while overlap associations s(BR1 ,C2
) + s(BR2 ,C1

) are

minimized. This leads to the MinMaxCut objective

JMMC(C1, C2; R1, R2) =
s(BR1 ,C2

) + s(BR2 ,C1
)

2s(BR1 ,C1
)

+
s(BR1 ,C2

) + s(BR2 ,C1
)

2s(BR2 ,C2
)

(17)

in contrast to Jcut in Eq.(??).

To find an efficient algorithm to compute the optimal

solution according to JMMC(C1, C2; R1, R2) we proceed as

follow. First, we write the weight matrix W explicitly,

W =




0 0 BR1,C1
BR1 ,C2

0 0 BR2,C1
BR2 ,C2

BT
R1 ,C1

BT
R2,C1

0 0

BT
R1 ,C2

BT
R2,C2

0 0


 (18)

Now we re-order the indices of the nodes,

q =




f (+)

f (−)

g(+)

g(−)


 ⇒ q =




f (+)

g(+)

f (−)

g(−)


 ,

i.e., nodes with Cluster 1 are indexed contiguously irre-

spect wether they are r-nodes or c-nodes. With this re-

ordering, W becomes[?]

W =




0 BR1,C1
0 BR1 ,C2

BT
R1 ,C1

0 BT
R2,C1

0
0 BR2,C1

0 BR2 ,C2

BT
R1 ,C2

0 BT
R2,C2

0


 (19)

This can be viewed as an undirected graph, with adjacency

matrix

W =

(
W11 W12

W21 W22

)
. (20)

From this, Eq.(??) can be written as

JMMC =
s(W12)

s(W11)
+

s(W12)

s(W22)
. (21)

Eq.(??) is the min-max cut objective function for undi-

rected graph [?]. One can show that

min
q

JMMC(q) ⇒ min
q

qT (D −W )q

qT Dq
, (22)

subject to qT We = qT De = 0, where D = (di) is a

diagonal matrix and di =
∑

j wij is the degree of node i

and e = (1, · · · , 1)T . We relax q(i) from discrete indicators
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to real values in (−1, 1). The solution of q for minimizing

the Rayleigh quotient of Eq.(??) is given by (D −W )q =

λDq, which can be written as

Wq = ζDq, ζ = 1− λ. (23)

For convenience, we define z = D1/2q, and write Eq.(??)

as a standard eigenvalue problem:

Ŵz = (D−1/2WD−1/2)z = ζz. (24)

Finally, coming back to the bipartite graph, we have

D =

(
Dr 0
0 Dc

)
, z =

(
u

v

)
=

(
D

1/2
r f

D
1/2
c g

)
. (25)

Substituting into Eq.(??), we have

(
0 B̂

B̂T 0

)(
u

v

)
= ζ

(
u

v

)
, (26)

where

B̂ = D−1/2
r BD−1/2

c . (27)

The solutions to Eq.(??) are SVD of B̂ (that SVD is the

solution to Eq.?? for bipartite graph is noted earlier[?, ?].)

We emphasize that Eq.(??) is identical Eq.(??), with the

correspondence relationship

B ⇒ B̂,

(
f

g

)
⇒

(
u

v

)
. (28)

(see also the similarity between Eq.(??) and Eq.(??).)

Therefore, the net effect of MinMaxCut of Eq.(??) over

the simple MinCut objective Eq.(??) or Eq.(??) is the

scaling of the association matrix B in Eq.(??). However,

with this scaling, the self-aggregation property emerges.

4 Self-Aggregation Networks

Just as the Hopfield networks is the solution to Mincut

objective, we propose the self-aggregation networks as the

K-way clustering solution to MinMax Cut.

We introduce nonlinear scaling factors, diagonal ma-

trices Dr (each element is the sum of a row, see Eq.??)

and Dc (each element is the sum of a column). Let B =

D
1/2
r B̂D

1/2
c , where B̂ is defined in Eq.(??). Applying SVD

on B̂, we obtain

B = D1/2
r (

m∑

k

ukζkv
T
k )D1/2

c = Dr

m∑

k

fkζkg
T
k Dc. (29)

We call fk = D
−1/2
r uk and gk = D

−1/2
c vk scaled PCA

components. In data clustering perspective, they are just

the relaxed clustering indicators, see Eq.(??). (We note

that there are a number of different approaches for non-

linear PCA [?, ?, ?, ?].)

In Hopfield networks, a pattern f1 is encoded into the

objective function as f1f
T
1 (the Hebb rule); multiple pat-

terns are encoded additively: f1f
T
1 + · · · + fkf

T
k . In our

problem, a pattern is a cluster partitioning indicator vec-

tor. Let FK = (f1, · · · , fK), and GK = (g1, · · · ,gK), and

QK = (q1, · · · ,qK) =

[
FK

GK

]
. (30)

We call QKQT
K

=
∑K

k=1 qkq
T
k the generalized self-aggregation

(SA) network. From the relation,

QKQT
K

=

[
FKF T

K
FKGT

K

GKF T
K

GKGT
K

]
. (31)

we see that FKF T
K

=
∑K

k=1 fkf
T
k is the SA network for row

objects, GKGT
K

=
∑K

k=1 gkg
T
k is the SA network for col-

umn objects, and FKGT
K

=
∑K

k=1 fkg
T
k is the SA network

for row-column associations,

The SA networks defined above share an important fea-

ture: cluster self-aggregation. Using neural networks lan-

guage, we call (FKGT
K
)ij the connection (association) be-

tween nodes i, j. Self-aggregation amounts to an connec-

tion weight updating process where connections between

different clusters are automatically suppressed while con-

nections within same clusters are enhanced.

In the following we provide a theoretical analysis and

prove this fundamental property for SA networks. The

development follows a perturbation analysis framework[?,

?, ?] by decomposing Ŵ in Eq.(??) as

Ŵ = Ŵ (0) + Ŵ (1)

where Ŵ (0) corresponds to the case where no overlap (con-

nection) exists between different clusters and Ŵ (1) cor-

responds to the case where small overlaps exist between

different clusters.

4.1 Well separated clusters

In this case, the connections between two clusters (edges

cross the cut line in Fig.??) do not exist. In the associ-

ation matrix, this is reflected by BRp,Cq
= 0, p 6= q [see

Eq.(??)]. We have

Theorem 2. When overlaps among K clusters are zero,

the K scaled PCA components q1, · · · ,qK get the same

maximum eigenvalue: ζk = 1, k = 1, · · ·K. Each qk is

a multistep (piecewise-constant) function (assuming ob-

jects within a cluster are indexed consecutively). In the
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scaled PCA subspaces, objects within the same cluster

self-aggregate into a single point. u–
The proof is a few algebraic manipulations. For sim-

plicity, we illustrate the proof by providing a concrete

K = 3 example. The solutions to Eq.(??) are

x(1) =
1√
2s11




D
1/2
r11er1

0
0

D
1/2
c11ec1

0
0




, x(2) =
1√
2s22




0
D

1/2
r22er2

0
0

D
1/2
c22ec2

0




etc. Here Drpq = diag(Bpqerq), (p, q = 1, · · · , K), erq = e

with the size of p-th row block; Dcpq = diag(Bpqecq), ecq =

e with the size of p-th column block; and spq = s(BRp ,Cq
).

Note that spq 6= sqp. Let

XK = (x(1), · · · ,x(K)). (32)

For any K-dim vector y = (y(1), · · · , y(K))T ,

(
f

g

)
= q = D−1/2XKy =




y(1) er1/(2s11)
1/2

...
y(K) erK/(2sKK)1/2

y(1) ec1/(2s11)
1/2

...
y(K) ecK/(2sKK)1/2




(33)

is an eigenvector of Eq.(??). Now any K orthonormal

{y1, · · · ,yK} leads to K eigenvectors {q1, · · · ,qK} ≡ QK.
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Figure 2: Left-top: adjacency matrix of a bipartite graph
of 2 dense clusters (diagonal blocks) with random overlaps
(off-diagonal blocks). Left-bottom: FKGT

K
. The overlaps

are reduced significately due to self-aggregation. Right:
computed q2 (cycles) and the approximation from Theo-
rem 3 (solid line), in original index order (top panel) and
in sorted index order (bottom panel).

In the space spanned by FK the coordinate of data ob-

ject i is ri = (f1(i), · · · , fK(i))T ; From Eq.??, data objects

within a cluster self-aggregate to (are located at) the same

point. Furthermore, FKF T
K

gives the clusters for row ob-

jects, the word clusters (see Fig.??):

FKF T
K

=




er1e
T
r1/2s11 0 0
0 er2e

T
r2/2s22 0

0 0 er3e
T
r3/2s33


 .

(34)

In the space spanned by GK the coordinate of data ob-

ject i is ri = (g1(i), · · · ,gK(i))T ; once again, data objects

within a cluster are self-aggregate to the same point. Fur-

thermore, GKGT
K

gives the clusters for column objects, i.e,

the document clusters (see Fig.??):

GKGT
K

=




ec1e
T
c1/2s11 0 0
0 ec2e

T
c2/2s22 0

0 0 ec3e
T
c3/2s33




(35)

In both SA networks FKF T
K

, GKG
T
K
, the overlap connec-

tions are identically zero as expected. However, connec-

tions within same clusters are enhanced significantly: ev-

ery pair of two objects i, j within a cluster acquires the

same connection strength even if objects i, j may not be

connected in the original association matrix B.

SA network FKGT
K

gives the association between row

objects and column objects. The self-aggregation gives the

sharpened row-column associations (see Figs.??).

FKGT
K

=




er1e
T
c1/2s11 0 0
0 er2e

T
c2/2s22 0

0 0 er3e
T
c3/2s33




(36)

This is useful for document retrieval (see §5.1).

4.2 Overlapping Clusters

In clustering, the useful case is that clusters overlap. Here

we assume that the overlaps are small and provide a per-

turbation analysis. We have the following results:

Theorem 3. At the first order, the solutions to Eq.(??)

are the following: the highest K eigenvectors have the

form

q = D−1/2XKy,

where XK is given in Eq.(??) and y and the eigenvalue λ

(ζ = 1− λ) satisfy the eigensystem

Γy = λy. (37)

Γ has the form Γ = Ω−1/2 Γ̄ Ω−1/2, where

Γ̄ =




h11 −s12 − s21 · · · −s1K − sK1

−s21 − s12 h22 · · · −s2K − sK2
...

... · · ·
...

−sK1 − s1K −sK2 − s2K · · · hKK




(38)
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where hkk =
∑

p6=k(skp + spk)

and Ω = diag(2s11, 2s22, · · · , 2sKK). u–
The proof is bit involved and will be omitted here.

This theorem captures several important features of SA

networks, which are embedded in the solution to Eq.(??).

Note that the K ×K matrix Γ is symmetric semi-positive

definite. Here we list two corollaries:

Corollary 2.1. For K = 2, the second lowest eigenvalue

of Γ is

λ2 = (s12 + s21)/2s11 + (s12 + s21)/2s22,

which is precisely the min-max cut clustering objective

JMMC in Eq.(??). Therefore, the smaller λ2, the better

quality of the resulting clusters. The corresponding eigen-

vector is

q2 = D−1/2X2y2 =

√
s22

2s11




er1

0
ec1

0


−

√
s11

2s22




0
er2

0
ec2


 .

Thus we automatically recover the partitioning indica-

tors. All these indicate SA networks is a highly consis-

tent and principled framework for clustering. The low-

est eigenvector is q1 = (1, · · · , 1). Q2 = (q1,q2) con-

structed from these two eigenvectors have the forms given

in Eqs.(??,??,??).

Corollary 2.2. The K eigenvectors YK = (y1, · · · ,yK) of

Γ satisfy Y T
K

YK = IK. The square orthonormal matrix YK is

full rank under general conditions, thus YKY T
K

= IK. Using

QK = D−1/2XKYK. and constructing the SA networks,

FKF T
K

, GKGT
K

and FKGT
K
, they will have the same block

diagonal structures of Eqs.(??,??,??).

Corollary 2.2 provides the theoretical basis for using

FKF T
K

and GKGT
K

for clustering, and FKGT
K

for improving

retrieval.

Example. We apply the above analysis to a bipartite

graph example with association matrix shown in Fig.??.

The bipartite graph has two dense clusters with large over-

laps between them. The indicator vector q2 computed di-

rectly from Eq.(??) together with that from Theorem 3

are also shown in Fig.??. They agree reasonably. The

eigenvalue values from Eq.(??) and Theorem 3 also agree

reasonably well: λ2 = 0.456, λ̃2 = 0.477. FKGT
K

gives a

sharpened association matrix (Fig.??) where the overlap

between the two clusters are greatly reduced. FKF T
K

and

GKGT
K

computed from Eq.(??) are shown in Fig.??. They

are close to the analysis results (Corollary 2.2). FKF T
K

gives clusters for row objects (words) and GKGT
K

gives clus-

ters for column objects (documents).

In self-aggregation, data objects move towards each
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Figure 3: Left: FKF T
K

for clustering row objects. Right:
GKGT

K
for clustering column objects.

other guided by connectivity, as connection weights be-

tween different clusters are suppressed and connections

within same clusters are enhanced. This is similar to the

self-organizing map [?], where feature vectors self-organize

into a 2D feature map while data objects remain fixed.

In Hopfield network, features are stored (encoded) as as-

sociative memories, whereas in SA networks, connection

weights are dynamically adjusted to learn the patterns in

an unsupervised way.

5 Applications of SA networks

5.1 Document Retrieval

We first apply SA networks to document retrieval. That

clustering can help retrieval is suggested by the Cluster-

ing Hypothesis [?]: if a document xi is highly relevant

to a query q, then documents very similar to xi (defined

by cosine similarity) are likely to be relevant to the query

as well. In many previous work, documents are first clus-

tered and query is then matched to the cluster centroids[?].

However, the experimental results so far indicates cluster-

ing had not helped the retrieval precision [?, ?]. (A recent

different usage is to cluster the retrieved documents to

group them into different topics[?].)

SA networks presents a new approach to use cluster-

ing for retrieval. Here the cluster structure is embedded

in FKGT
K

which is very similar to the original word-to-

document matrix. We truncate the expansion in Eq.(??)

at K and set ζk = 1,

B ' Dr

K∑

k=1

fkg
T
k Dc = DrFKGT

K
Dc = (x̃1, · · · , x̃n), (39)

the jth column x̃j is the representation of SA network for

document j. The relevance rj of document x̃j for query

6



q through the cluster structure is simply rj = cos(q, x̃j).

If the clusters are well separated, all documents within a

cluster will have same relevance to a query (see Eq.(??)

and Fig.2 left-bottom panel), and thus all documents of

the most relevant cluster will be retrieved, even though

their original vector-space representations ({xj}, columns

in B) could differ considerably. The self-aggregation makes

this possible. In practice, overlaps exist; documents most

similar to each other will have similar x̃j and will get very

similar relevance score using the cosine similarity metric.

Therefore, Eq.(??) is a convenient and natural way to in-

corporate clustering information into retrieval.

We define the total relevance as the combination of the

keywords matching (KM) and SA network matching:

rj = cos(q,xj) + α cos(q, x̃j) (40)

We call this self-aggregation improved keywords matching

(SAI-KM). In all experiments below, α = 0.5

We apply this retrieval method to 4 standard IR test

datatsets: Medline (1033 docs, 30 queries), Cranfield (1400

docs, 225 queries), CACM (3204 docs, 64 queries) and

NPL (11429 docs, 93 queries) collections.

Precision-recall curves for Medline, CACM, NPL and

Cranfield collections are shown in Fig.??. The average pre-

cisions are summarized in Table 1. Here we use tf.idf

term weighting. K=10 for Medline, K=20 for all others.

On Medline, SAI-KM clearly improves the retrieval pre-

cisions at all recall levels. It is interesting to note that

LSI also performs well on Medline. The advantage of SA

network is that we only store 2K vectors FK, GK, whereas

LSI typically use K = 200, about 20 times more storage.

For CACM and NPL, SAI-KM improves precision at

low recall levels (0-10%). We note that retrieval precision

at low recall are important because in practice user usually

check the few top returned documents only.

For Cranfield, SAI-KM performs slightly worse than

standard keywords matching. We note that clustering hy-

pothesis were first experimented on this collection and the

results are generally inferior to keywords matching [?, ?].

By examining the SA networks for Cranfield, the cluster

structure is not detectable, i.e, this collection does not

have clear sub-structures.

In summary, comparing to standard keywords match-

ing, SA network improved retrieval achieves substantially

better retrieval precision for Medline, improves slightly at

low recall for CACM and NPL, and performs slightly worse

for Cranfield. This represents a significant progress from

earlier work summarized in [?].
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Figure 4: Precision-recall curves for Medline, CACM, NPL
and Cranfield collections. 4 for keywords matching, u– for
SA-improved keywords matching.

Med CACM NPL Cran
KM 0.463 0.331 0.201 0.478

SAI-KM 0.522 0.337 0.203 0.467

Table 1: Average 11-point retrieval precision.

5.2 Document Clustering

We apply SA networks clustering method on newsgroup

articles in 5 newsgroups (see Fig.??). 100 news articles

are randomly selected from each newsgroup. 1000 words

are selected based on mutual information. The term-

document association matrix B are solved by SVD. The re-

sults are shown in Fig.??. Here we emphasize the fact that

words aggregate into clusters in the K-dim space FK (see

Eq.??) while documents are simultaneous clustered using

GKGT
K
. The clustering accuracy [

∑
k tkk/N, T = (tij) is

the contingency table] of the clustering results is 86%. In

comparison, the standard K-means methods has a cluster-

ing accuracy of 66%, while two improved K-means meth-

ods achieves 76-80% [?].
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6 Summary

We present a document clustering framework connecting

PCA, Kmeans with Hopfield networks. The min-max cut

clustering objective inforces cluster balance and leads to

scaled PCA. Networks constructed with scaled PCA com-

ponents via Hebb rule has the unique and desirable self-

aggregation property. SA networks improves document

retrieval and provides an effective multi-K clustering algo-

rithm, as shown by a number of experiments.
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